Transannular Se-Se Interaction in Electrochemical Oxidation of 5H,7H-Dibenzo[b,g][1,5]diselenocin and Formation of Its Diselena Dication in Concentrated Sulfuric Acid

Hisashi FUJIHARA,* Yoko UENO, Jer-Jye CHIU, and Naomichi FURUKAWA* Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

5H,7H-Dibenzo[b,g][1,5]diselenocin (1) undergoes the reversible electrochemical oxidation with low oxidation potential which is attributed to the transannular Se-Se interaction. The formation of diselena dication of 1 was observed in the reaction of 1 and its Se-oxide with concd H_2SO_4 by 1H , ^{13}C , and ^{77}Se NMR spectroscopy.

Transannular interaction and bond formation (e.g., dication formation) between sulfur atoms in medium-sized cyclic bis-sulfides and related compounds have been extensively studied.^{1,2)} However, such interactions in medium-sized selenium heterocycles have received less attention. Very recently, we have reported that the reaction of the Se-oxide of a new selenium heterocycle, 5H,7H-dibenzo[b,g][1,5]diselenocin (1), with 2 equiv of trimethylsilyl trifluoromethanesulfonate gave the diselena dication salt containing aromatic ring.³⁾ We have now studied the formation of the diselena dication from the reaction of 1 and its Se-oxide (2) with concd H_2SO_4 , because the chemical behavior of cyclic bis-selenides in concd H_2SO_4 are not well known.⁴⁾ This paper reports the reversible electrochemical oxidation of 1 and the formation of its dication.

In order to confirm the existence of Se-Se interaction in 1, the electrochemical oxidation of 1 was studied by cyclic voltammetry. Interestingly, when the cyclic voltammogram (CV) of 1 was measured in CH₃CN containing 0.1 M NaClO₄ as supporting electrolyte with a glassy carbon working electrode and Ag/0.01 M AgNO₃ in CH₃CN as a reference electrode (scan rate; 20 mV/s), one reversible oxidation peak appeared at +0.56 V. The CV of diphenyl selenide (5) and dibenzyl selenide (6) showed the irreversible oxidation wave at +0.98 V and +1.05 V, respectively. Thus the facile oxidation of 1 and the unusual stability of the cationic species of 1 can be rationally explained in terms of the destabilization of 1 by transannular lone-pair-lone-pair repulsion and the stabilization of the oxidized species by neighboring-group participation, *i.e.*, bond formation between the two selenium atoms. In contrast, its analogous compounds containing sulfur atom, 5H,7H-dibenzo[b,g][1,5]-dithiocin (7), -thiaselenocin, and -selenathiocin, exhibited irreversible redox behavior. Normally the electrochemical oxidations of the selenides having alkyl and/or aryl groups are irreversible.

In conformational properties of 1 and 2 concerning eight-membered rings, two typical different conformers such as chair and boat-forms can exist.⁵⁾ The conformers can be assigned by the ¹H NMR spectral data for benzylic methylene protons of the eight-membered ring. 5,6) The ¹H NMR (500 MHz) spectra of 1 and 2 in CDCl₃ at 25 °C show the existence of two conformers in the ratio of 28 (boat): 72 (chair) for 1 and of 64 (boat): 36 (chair) for 2, [1: ${}^{1}H$ δ 3.70 (br s, CH₂), 3.91, 5.20 (ABq, J=13 Hz, CH₂), 7.02-7.93 (m, ArH); 6) 2: ¹H δ 3.79, 4.14 (ABq, J=11.5 Hz, CH₂), 4.18, 5.81 (ABq, J=11.5 Hz, CH₂), 7.13-7.98 (m, ArH)^{6,7})]. These conformers can also be characterized by ⁷⁷Se NMR spectroscopy; 8) 1 (CHCl₃ at 25 °C): δ 352.5 (chair) and 381.9 (boat) for -SeAr, and δ 380.4 (chair) and 398.7 (boat) for -SeCH₂Ar; 2: δ 368.2 (chair) and 387.6 (boat) for -SeAr, and δ 915.8 (boat) and 940.5 (chair) for -Se(O)CH₂Ar.

Dissolution of the selenide 1 in concd D₂SO₄ led to the formation of the diselena dication 3 as evidenced by the ¹H, ¹³C, and ⁷⁷Se NMR spectroscopy; the benzyl proton signals for 1 in CDCl₃ disappeared and new AB quartet peaks appeared at δ 5.15 and 5.36 (J=15 Hz) in concd D₂SO₄, and the signal of the methylene carbon atoms was shifted to downfield from δ 25.5 and 32.1 (1 in CDCl₃) to δ 57.5, while the ⁷⁷Se NMR spectrum showed only two peaks at δ 812.0 (SeAr) and 815.7 (SeCH₂Ar).⁹⁾ These spectral data indicate that 3 is a single conformer, i.e., boat-form in concd D₂SO₄ solution [3: ¹H δ 5.15, 5.36 (ABq, J=15 Hz, 4H), 7.17-7.28 (m, 6H), 7.45-7.47 (m, 2H); 13 C δ 57.5, 131.6, 133.6, 134.4, 135.9, 137.4, 141.0] (Scheme 1). This reaction may proceed via an electron transfer pathway because, two-electron oxidation of 1 with 2 equiv of NOPF₆ as a one-electron-oxidizing agent afforded the diselena dication PF₆ salt 4: mp 100 °C (decomp); ¹H (CD₃CN) δ 5.38, 5.66 (ABq, J=15 Hz, 4H), 7.50-7.60 (m, 6H), 7.79-7.83 (m, 2H); 13 C δ 60.1, 130.6, 131.1, 132.0, 132.7, 133.9, 139.2]. In contrast to 1 in D_2SO_4 , the ¹H and ¹³C NMR spectra of D_2SO_4 solutions of the selenide 6 and the dithiocin 7 showed complex signals due to the instability of 6 and 7 in D₂SO₄. This result suggests that the cationic species of 1 is more stabilized by transannular bond between two selenium atoms as compared with that of 7.

The dication 3 was also formed on treatment of the selenoxide 2 with concd D₂SO₄, since the ¹H, ¹³C, and ⁷⁷Se NMR chemical shifts of 2 in concd D₂SO₄ observed agreed well with those for 3 obtained from 1. Hydrolysis of the D₂SO₄ solution of 2 resulted in the formation of the selenoxide 2 (84%).

This work was supported by the Grant-in-Aid for Scientific Research on Priority Area of Organic Unusual Valency No. 03233101 from the Ministry of Education, Science and Culture, Japan. One of us (H.F.) thanks a Scientific Research Grant (No. 03640435) from the Ministry of Education, Science and Culture, Japan.

- 1) W. K. Musker, T. L. Wolford, and P. B. Roush, J. Am. Chem. Soc., 100, 6416 (1978).
- 2) H. Fujihara, A. Kawada, and N. Furukawa, J. Org. Chem., 52, 4254 (1987); H. Fujihara, J.-J. Chiu, and N. Furukawa, J. Am. Chem. Soc., 110, 1280 (1988).
- 3) H. Fujihara, Y. Ueno, J.-J. Chiu, and N. Furukawa, J. Chem. Soc., Chem. Commun., in press.
- 4) Concd H₂SO₄ acts both as an oxidizing agent and a strong acid: A. J. Bard, A. Ledwith, and H. J. Shine, Adv. Phys. Org. Chem., 12, 155 (1976).
- 5) R. P. Gellatly, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1976, 913.
- 6) The protons and carbons of the aromatic rings in the NMR spectra (500 MHz-1H and 125 MHz-13C) of 1 and 2, except for dications 3 and 4, showed two sets of signals due to the existence of two conformers; the details are described in Ref. 3.
- 7) The benzylic carbon atoms of 2 (CDCl₃) appear at δ 52.2 and 60.6.
 8) The chemical shifts are relative to Me₂Se. The conformers were assigned by the intergration of the selenium peaks. The peak of benzylic selenide of 1 was determined by off resonance method.
- 9) The ⁷⁷Se chemical shift of the aliphatic diselena dication salt of 1,5-diselenacyclooctane is 806.5 ppm: H. Fujihara, R. Akaishi, T. Erata, and N. Furukawa, J. Chem. Soc., Chem. Commun., 1989, 1789.

(Received June 24, 1991)